What is Venn Diagram and why the Venn diagram is so essential?
- The graphical representation of the sets and their operations using geometrical shapes is called the Venn diagram.
- The English mathematician John Venn introduced Venn Diagram in $1881 AD$.
- The universal set $∪$ is usually represented by a rectangle.
- Inside the rectangle circle or oval represents sets.
Example:
If $A$ $=\{1, 2, 3\}$ and $B$ $=\{3, 4, 5\}$, $U$ $=\{1, 2, 3, 4, 5\}$
then their Venn diagram is
Solution:
Operations on sets and Venn Diagram
1. Union of two sets
$A\cup B$ $=\{x:x\epsilon A$ or $\epsilon B\}$
Example:
$A$ $=\{1, 2, 3\}$, $B$ $=\{2, 3, 4\}$ then $A\cup B$ $=\{1, 2, 3, 4\}$
2. The intersection of two sets
$A\cap B$ $=\{x:x\epsilon A$ $\wedge$ $x\epsilon B\}$
$A\cap B$ $=\{3, 4\}$
$A-B$ $=\{x:x\varepsilon A$ and $x\notin B\}$.
It is also written as $A\cap B'$
Similarly $B-A$ $=B\cap A'$
Similarly $B-A$ $=B\cap A'$
E.g.
$A$ $=\{1, 2, 3\}$, $B$ $=\{2, 3, 4\}$
$A$ $=\{1, 2, 3\}$, $B$ $=\{2, 3, 4\}$
$A-B$ $=\{1\}$ and $B-A$ $=\{4\}$
0 Comments