Properties of the Real number
Properties w.r.t addition
$i)$ Closure Property
- Any two real numbers are added together to form a real number.
i.e. $x$, $y\varepsilon$ $\mathbb{R}$ $\Rightarrow$ $x+y$ $\varepsilon$ $\mathbb{R}$
Example:
$16$, $24\varepsilon \mathbb{R}$ $20+24$ $=40\varepsilon\mathbb{R}$
$7$, $\sqrt{5}$ $\varepsilon\mathbb{R}$ $7+$ $\sqrt {5}$ $=7+2.236…$ $=9.236…$ $\varepsilon \mathbb{R}$
$ii)$ Commutative Property
- The Sum of any two real numbers in any order is the same.
$x+y$ $=y+x$, $\forall$ $x,y$ $\varepsilon \mathbb{R}$
Examples:
$a)$ $2.6+7.2$ $=9.8$ $=7.2+2.6$
$b)$ $\sqrt{2}$ $+\sqrt{3}$ $=\sqrt{3}$ $+\sqrt{2}$
$iii)$ Associative Property
- The sum of any three numbers in any order remains the same.
$x$ $+(y+z)$ $=(x+y)$ $+z$, $\forall$ $x,y,z$ $\epsilon\mathbb{R}$
Example:
$a)$ $5$ $+(7+8)$ $=20$ $=(5+7)$ $+8$
$b)$ $\sqrt{3}$ $+(\sqrt{6} +\sqrt{7})$ $=(\sqrt{3}+\sqrt{6})$ $+\sqrt{7}$
$iv)$ Additive Identity
- There exists a unique real number $0$, called the additive identity such that
$x+0$ $=x$ $=0+x$ $\forall$ $x$ $\epsilon\mathbb{R}$
Examples
$a)$ $0.4+0$ $=0.4$ $=0+0.4$
$b)$ $\sqrt{2}+0$ $=\sqrt{2}$ $=0+\sqrt{2}$
$v)$ Additive Inverse
- If the sum of two numbers is zero, then the numbers are called the additive inverse of each other.
- The additive inverse of any number can be found by changing the sign of the number.
$x+x'$ $=0$ $=x'+x$ $\forall$ $x,x'$ $\epsilon \mathbb{R}$
e.g.
$a)$ $2+(-2)$ $=0(-2)+2$
$b)$ $2\sqrt{5}+(-2\sqrt{5})$ $=0$ $=(-2\sqrt{5})+(2\sqrt{5})$
Properties w.r.t. Multiplication
$i)$ Closure Property
- Any two real numbers can be multiplied together to get a real number.
i.e. $x,y$ $\varepsilon \mathbb{R}$ $\Rightarrow$ $x.y$ $\varepsilon\mathbb{R}$
Example:
$1)$ $0.6$, $0.4\varepsilon \mathbb{R}$ $\Rightarrow$ $(0.6)(0.4)$ $=0.24$ $\varepsilon\mathbb{R}$
$2)$ $\sqrt{2}$, $\sqrt{3}$ $\varepsilon\mathbb{R}$ $\Rightarrow$ $\left( \sqrt{2} \right)$ $\left( \sqrt{3} \right)$ $=\sqrt{6}$ $\varepsilon \mathbb{R}$
$ii)$ Commutative Property
- The product of any two real numbers in any order the result will be the same
$xy$ $=yx$, $\forall$ $x,y$ $\varepsilon \mathbb{R}$
Examples:
$a)$ $\sqrt{2}$ $\times \sqrt{3}$ $=\sqrt{6}$ $=\sqrt{3}$ $\times \sqrt{2}$
$b)$ $0.2$ $\times 0.6$ $=0.12$ $=0.6$ $\times 0.2$
$iii)$ Associative Property
- The product of any three real numbers in any order remains the same
$x.(y.z)$ $=(x.y).z$, $\forall$ $x,y,z$ $\epsilon\mathbb{R}$
OR $x(yz)$ $=(xy)z$
Example:
$a)$ $0.2$ $\times $ $\left( \sqrt{3}\times \frac{5}{7} \right)$ $=0.247$ $=\left( 0.2\times \sqrt{3} \right)$ $\times \frac{5}{7}$
$b)$ $\left( \sqrt{3}\times 4 \right)$ $\times \sqrt{6}$ $=16.97$ $=\sqrt{3}$ $\times \left( 4 \times \sqrt{6} \right)$
$iv)$ Multiplicative Identity
- There exists a unique real number $1$, called the multiplicative identity such that
$x\times 1$ $=x$ $=1$ $\times x$ $\forall$ $x$ $\epsilon\mathbb{R}$
Examples
$a)$ $\sqrt{5}$ $\times 1$ $=\sqrt{5}$ $=1$ $\times $ $\sqrt{5}$
$b)$ $0.21502$ $\times 1$ $=0.21502=$ $1\times 0.21502$
$v)$ Multiplicative Inverse
- If the product of two numbers is one, then the numbers are called the multiplicative inverse of each other.
- The multiplicative inverse of any number can be found by changing the numerator into the denominator and the denominator into the numerator.
$x+x'$ $=0$ $=x'+x$ $\forall$ $x,x'$ $\epsilon \mathbb{R}$
e.g.
$a)$ $\frac{2}{\sqrt{3}}$ $\times$ $ \frac{\sqrt{3}}{2}$ $=1$ $=\frac{\sqrt{3}}{2}$ $\times $ $\frac{2}{\sqrt{3}}$
$b)$ $\frac{1}{2}$ $\times $ $\frac{2}{1}$ $=1$ $=\frac{2}{1}$ $\times $ $\frac{1}{2}$
0 Comments