Square of a number || Perfect Square of a number || Square Root of a positive real number || Properties of Square Root

Square of a number, Perfect Square of a number, Square Root of a positive real number, Properties of Square Root


Square of a number

  • A number's square is the product of the number and the number itself.
  • A number whose power is $2$.
  • The square of $x$ is $(x$ $\times x)$ denoted by $x^2$.

Examples:

$1^2=$ $1\times 1$ $=1$             $(-1)^2$=(-1)(-1)$=1$

$2^2=$ $2\times 2$=4$             $(-2)^2$=(-2)(-2)$=4$

$3^2$=3\times 3$=9$             $(-3)^2$=(-3)(-3)$=-9$

$4^2$=4\times 4$=16$           $(-4)^2$=(-4)(-4)$=16$

$5^2$=5\times 5$=25$           $(-5)^2$=(-5)(-5)$=-25$

$6^2$=6\times 6$=36$           $(-6)^2$=(-6)(-6)$=26$

$7^2$=7\times 7$=9$             $(-7)^2$=(-7)(-7)$=-49$

$8^2$=8\times 8 $=64$           $(-8)^2$=(-8)(-8)$=64$

$9^2$=9$\times 9$=81$           $(-9)^2$=(-9)(-9)$=-81$

$3^2$=3$\times 3$=9$              $(-3)^2$=(-3)(-3)$=9$


$\left( \frac{1}{2} \right)^2$ $=\left( \frac{1}{2} \right)$ $\left( \frac{1}{2} \right)$ $=\frac{1}{4}$      $\left(- \frac{1}{2} \right)^2$ $=\left(- \frac{1}{2} \right)$ $\left(- \frac{1}{2} \right)$ $=\frac{1}{4}$

                  $\left( \frac{3}{2} \right)^2$=\left( \frac{3}{2} \right)$\left( \frac{3}{2} \right)$=\frac{9}{4}$          $\left(-\frac{3}{2} \right)^2$=\left( -\frac{3}{2} \right)$\left(- \frac{3}{2} \right)$=\frac{9}{4}$



Perfect Square of a number

  • A natural number that is a square of another number is called a perfect square of that number.

i.e.

$9$=3^2$,     $9$ is a perfect square of $3$

$16$=4^2$,    $16$ is a perfect square of $4$

$1$=1^2$,      $1$ is a perfect square of $1$

$64$=8^2$,    $64$ is a perfect square of $8$

                   .

                   .

                   .              

$n$\times n$=n^2$,      $(n$\times n)$ is a perfect square of $n$

                  

We can find the perfect square of rational numbers
$\frac{9}{4}$ $=\left( \frac{3}{2} \right)^2$,      $\frac{9}{4}$ is perfect square of $\frac{3}{2}$

 

We can not find perfect squares of irrational numbers
$\left( \sqrt 2 \right)^2$ $=2$      is a square but not a perfect square

$\left( \pi \right)^2$ $=\pi^2$       is not a perfect square

 

Square Root of a positive real number

  • The square root of a positive real number is a number that when multiplied by itself gives the same number.
  • A number's square root is one of its two equal factors.
  • A radical sign “$\sqrt{ }$”, is the symbol used to indicate a square root.
  • It is also called “principal square root”.

In general for a positive real number $q$ the square root of $q$ will $\sqrt q$.

In the notation $\sqrt q$, $“\sqrt{}”$ is called the “radical sign” and $q$ is called the “radicand”.

Hence, $\sqrt q$ stands for a positive real number $x$ for which

$q=$x^2$

 

Properties of Square Root:

$i)$  $\sqrt a$ $=x$\implies a$=x^2$,    $a$\ge 0$

Proof:

$a^{\frac{1}{2}}$=x$

Squaring on b.sides

$a$=x^2$

 

$ii)$   $\sqrt a$\sqrt a$=a$,     $a$\ge 0$

Proof:

$a^{1/2}\times a^{1/2}$=a^{1/2+1/2}$=a^1$=a$

$\sqrt a$\sqrt a$=a$

 

$iii)$   $\sqrt a$\sqrt b$=\sqrt{ab}$,   $a,b$\ge0$

Proof:

$\sqrt a^{1/2}$\sqrt b^{1/2}$ $=(ab)^{1/2}$ $=\sqrt {ab}$

$\sqrt a$\sqrt b$ $=\sqrt {ab}$

 

$iv)$   $\frac{a}{a}$ $=1$,   $a$\gt 0$

Proof:

$\frac{\sqrt a}{\sqrt a}$ $=\frac{a^{1/2}}{a^{1/2}}$ $=a^{\frac{1}{2}$-\frac{1}{2}}$ $=a^0$ $=1$

$\frac{\sqrt a}{\sqrt a}$ $=1$

 

$v)$   $\frac{a}{\sqrt a}$ $=\sqrt a$,    $a$\gt 0$

Proof:

$\frac{a}{\sqrt a}$ $=\frac{a}{a^{1/2}}$ $=a^{1-\frac{1}{2}}$ $=a^{\frac{1}{2}}$ $=\sqrt a$

$\frac{a}{\sqrt a}$ $=\sqrt a$

 

$vi)$   $\frac{\sqrt a}{a}$ $=\frac{1}{\sqrt a}$,      $a\gt 0$

Proof:

$\frac{\sqrt a}{a}$ $=\frac{a^{\frac{1}{2}-1}}{a}$ $=a^{\frac{1}{2}-1}$ $=a^{-\frac{1}{2}}$=\frac{1}{\sqrt a}$

$\frac{\sqrt a}{a}$ $=\frac{1}{\sqrt a}$

Post a Comment

0 Comments