Factorization H.C.F L.C.M Simplification and Square roots

Factor

  • A number that divides another number perfectly.
  • A divisor that exactly divides by dividend then the divisor is known as a factor of the dividend.

$50÷2$ $=25$

Hence $2$ is the factor of $50$


The factor of the algebraic expressions

  • An algebraic expression that divides exactly into another expression is known as the factor of the expression.


Prime number

  • A natural number greater than $1$ that has only two factors $1$, and itself.

$2$, $3$, $5$, 7$$, $11$, $13$, $17$,....


Similarly in Algebra

  • An algebraic expression that has only two factors one and itself is known as a prime factor.

$\left( x-a \right)$, $\left( x+a \right)$, $\left( x^2+a^2 \right)$


Composite Number

  • A natural number greater than $1$ has more than two factors.

$4$, $6$, $8$, $9$, $10$, $12$, $14$, $15$, $16$, $18$, $20$...


Similarly in Algebra

$\left( x+a \right)^2$, $\left( x^2-a^2 \right)$, $\left( x+a \right)^3$, $\left( x-a \right)^2$

  • A composite number or expression can be factorized into prime factors.

As

$20=$ $1\times 2$ $\times 2$ $\times 5$

$\left( x^2-a^2 \right)$ $=\left( x-a \right)$ $\left( x+a \right)$


Prime Factorization

  • Prime factorization is a way of showing a composite number or expression as the product of a prime number or expression.
  • The process of finding factors of a given expression is called factorization.
  • Factorization means finding factors.


$1.$  Factors of the expression of the type

$ka$ $+kb$ $+kc$ $=k$ $\left( a+b+c \right)$

where $k$ is any constant number or any algebraic term

e.g.

$6x^2y^2$ $+12xy^3$ $-30x^3y$

$6xy$ $\left( xy+2y^2-5x^2 \right)$


$2.$ Factors of the expression of the type

$ac$ $+ad$ $+bc$ $+bd$

$a(c+d)$ $+b(c+d)$

$(c+d)$ $(a+b)$ $=(a+b)$ $(c+d)$


Method

Step $1:$ Regroup terms (such that terms with common factors are together)

Step $2:$ Write each term as a product of irreducible factors

Step $3:$ Apply distributive law

Step $4:$ Irreducible factors are obtained


Example: Resolve into factors

$i)$  $2x^2y^3$ $+2x^4y$ $-3x^3y^2$ $-3xy^4$

solution:

$=xy$ $(2xy^2$ $+2x^3$ $-3x^2y$ $-3y^3)$

$=xy$ $\{2x(y^2+x^2)-3y(x^2+y^2)\}$

$=xy$ $(x^2+y^2)(2x-3y)$


$3)$ Perfect square

Perfect squares are of the form

$a^2$ $+2ab$ $+b^2$ $=(a+b)^2$

$a^2$ $-2ab$ $+b^2$ $=(a-b)^2$


Identification and Solution

Identify and solve a trinomial is a perfect square

Step $1:$ Notice the first term is a square, take its square root.

Step $2:$ Notice the last term is a square, take its square root.

Step $3:$ Multiply the results of the first 2 steps and double that product, if the result is the middle term of the trinomial, then the expression is a perfect square.

Step $4:$ The binomial in the solution is the sum or difference of the square roots calculated in steps $1$ and $2$.
The middle term of the trinomial has the same sign as the sign between the components of the binomial.


Example: Resolve into factors

$i)$  $9$ $-6(a-3b)$ $+(a-3b)^2$ $+(a-3b)^4$

solution:

Take the square root of the first term and last term

$\sqrt{9}$ $=\pm 3$ and $\sqrt {(a-3b)^4}$ $=\pm (a-3b)$

Multiplying the result and doubling that

$2$ $\times 3$ $(-(a-3b))$ $=-6(a-3b)$

$\left( 3-\left( a-3b \right)^2 \right)^2$ or $\left( \left( a-3b \right)^2-3 \right)^2$


$ii)$  $a^2b^2$ $-6ab$ $+9$

Solution:

Take the square root of the first term and last term

i.e  $\sqrt {a^2b^2}$ $=\pm ab$ and $\sqrt {9}$ $=\pm 3$

Multiplying the result and doubling that

$2(ab)(-3)$ $=-6ab$

$(ab)^2$ $+2(ab)(-3)$ $+(-3)^2$

$(ab-3)^2$


$4.$ Difference of squares

The difference between squares is the form

$$a^2-b^2 =(a+b)(a-b)$$

Because there is no something like the middle word, they are more simpler to identify than the perfect squares

Notice why is no middle term

$(a+b)(a-b) =a^2-ab+ab-b^2$ $=a^2-b^2$

Two middle terms can be canceled

Answer "yes" to four questions if an expression is a difference of squares.

Method

$1.$ Are there only two terms? "Yes"

$2.$ Do they have a $"-"$ symbol between them?

$3.$ Is the first term a square? if so, take its square root.

$4.$ Is the second term a square?


Examples:

$i)$  $\left( ax^4-\frac{a}{16} \right)$

Solution:
$=a$ $\left( \left( ax^2 \right)^2$ $-\left( \frac{1}{4} \right)^2 \right)$

$=a$ $\left( x^2+\frac{1}{4} \right)$ $\left( x^2-\frac{1}{4} \right)$


$ii)$  $\left( a^4b^4-144c^2 \right)$

Solution:

$=a$ $\left( \left( a^2b^3 \right)^2$ $-\left( 12c \right)^2 \right)$

$=\left( a^2b^3+12c \right)$ $\left( a^2b^3-12c \right)$


$iii)$  $\left( a-b \right)^2$ $-9c^2$

Solution:

$=\left( a-b \right)^2$ $-\left( 3c \right)^2$

$=\left( a-b+3c \right)$ $\left( a-b-3c \right)$


5. Factorizing Trinomial

  • The factorization of a trinomial that is neither a perfect square nor a difference of squares is a frequent issue in elementary algebra.

$x^2$ $+(p+q)x$ $+(pq)$ $=(x+p)(x+q)$

  • The sign after $x^2$ is known as sign $1$ and the sign after $x$ is sign $2$

$x^2$ $+ax$ $+b$ $=x^2$ $+(p+q)x$ $+(pq)$ $=(x+p)(x+q)$, where $a$ $=(p+q)$ and $b$ $=pq$


Simple Case Method

Let $x^2$ $+15x$ $-100$

Step $1:$ Set up parenthesis for a pair of binomials. Put $x$ in the left-hand position of each binomial.

e.g. $=$ $(x$    $)(x$    $)$


Step 2: Put the sign $1$ in the middle position in the left binomial.

$=$ $(x+$    $)(x$    $)$


Step 3: Multiply sign $1$ and sign $2$ to get the sign for the right binomial.

$=$ $(x+$    $)(x$    $)$

$∴$ $+\times -$ $=-$

$=$ $(x+$    $)(x-$    $)$


Remember that:

$+$ $\times +$ $=+$,    $-$ $\times -$ $=+$

$-$ $\times +$ $=-$,      $+$ $\times -$ $=-$


Step $4:$ Find the L.C.M of constant number and find two numbers such that

$(a)$ Multiply to get the last term (constant)

$100$ $=1\times 2$ $\times 2$ $\times 5$ $\times 5$

$(20)(-5)$ $=-100$


$(b)$ Add to get middle term (coefficient of $x$).

$20-5$ $=15$

$(x+20)(x-5)$


$2nd$ Method

$r^6$ $-10r^3$ $+16$

Step $1:$ Find the L.C.M of the last term(constant) and write as all prime numbers

$16$ $=1\times 2$ $\times 2$ $\times 2$ $\times 2$


Step 2: Find two numbers such that

$(a)$ Multiply to get the last term(constant).

$(-2)(-8)$ $=16$


$(b)$ Add to get the middle term(coefficient of $x$)

$-2-8$ $=-10$


Step $3:$ Spilt the middle term into two terms with coefficients equal to the values found in step $2$

$r^6$ $-2r^3$ $-8r^3$ $+16$


Step 4: Group the terms into pairs

$(r^6-2r^3)$ $-(8r^3-16)$

$r^3(r^3-2)$ $-8(r^3-2)$

$(r^3-2)(r^3-8)$


Example:

$(i)$ $ax^4$ $-20ax^2y^2$ $-96ay^4$

Solution:

$96$ $=1\times 2$ $\times 2$ $\times 2$ $\times 2$ $\times 2$ $\times 3$

$-96$ $=ab$ $20$ $=a+b$

$(2$ $\times 2$ $\times 2$ $\times 3)$ $\times (2$ $\times 2)$ $=96,$  $a$ $=-24$, and $b$ $=4$

$-24$ $+4$ $=20$


$=ax^4$ $-24ax^2y^2$ $+4ax^2y^2$ $-96ay^4$

$=ax^2(x^2$ $-24y^2)$ $+4ay^2(x^2y$ $-24y^2)$

$=(x^2$ $-24y^2)$ $(ax^2$ $+4ay^2)$

$=a(x^2$ $-24y^2)$ $(x^2$ $+4y^2)$


$(ii)$ $(a+b)^2$ $+20(a+b)$ $+36$

Solution:

$36$ $=1$ $\times 2$ $\times 2$ $\times 3$ $\times 3$

$2$ $\times 18$ $=36$

$2+18$ $=20$


$=(a+b)$ $+2(a+b)$ $+18(a+b)$ $+36$

$=(a+b)$ $\left\{ \left( a+b \right)+2 \right\}$ $+18$ $\left\{ (a+b)+2 \right\}$

$=(a+b+2)$ $(a+b+18)$


$6.$  Expression of the type

$(a)$  $a^2$ $+2ab$ $+b^2$ $-c^2$

$(b)$  $a^2$ $-2ab$ $+b^2$ $-c^2$


$(a)$  $a^2$ $+2ab$ $+b^2$ $-c^2$

$(a+b)^2$ $-c^2$ $=(a+b+c)$ $(a+b-c)$

$(b)$  $a^2$ $-2ab$ $+b^2$ $-c^2$

$(a+b)^2$ $-c^2$ $=(a-b+c)$ $(a-b-c)$


Identification

$(1)$ Are they have four terms?

$(2)$ Are three terms squared?

$(3)$ Is one or two terms negative?

$(4)$ Is one term double of $1^{st}$ term and $2^{nd}$ term?


Example:
$(i)$  $y^4$ $+2y^3z$ $-2yz^3$ $-z^4$
Solution:
$=\left( y^2 \right)^2$ $+2$ $\left( y^2 \right)$ $\left( yz \right)$ $+\left( yz \right)^2$ $-\left( yz \right)^2$ $-2yz^3$ $-z^4$