De Morgan's Law
- August De Morgan $(1806-1871)$ was a British mathematician who formulated De Morgan Law
- If $A$ and $B$ are the subsets of a universal set $U$, then
$i)$ $(A\cup B)'$ $=(A'\cap B')$ $ii)$ $(A\cap B)'$ $=(A'\cup B')$
$i)$ $(A\cup B)'$ $=(A'\cap B')$
Proof:
Let $x\epsilon (A\cup B)'$
$x\notin (A\cup B)$
$x\notin A$ and $x\notin B$
$x\epsilon (A'\cap B')$
$(A\cup B)'\subseteq (A'\cap B')$ $(i)$
Let $y\epsilon (A\cup B)'$
$y\notin (A\cup B)$
$y\notin A$ and $y\notin B$
$y\epsilon (A'\cap B')$
$(A\cup B)'\subseteq (A'\cap B')$ $(ii)$
From $(i)$, and $(ii)$ we have,
$(A\cup B)'$ $=A'\cap B'$
Similarly, we can prove. $(A\cap B)'$ $=A'\cup B'$
0 Comments