Properties of Union and Intersection (Commutative, Associative, and Distributive) w. r. t. Union and Intersection



Properties of Union and Intersection

a)  Commutative Property of Union

For any two sets $A$ and $B$
$A\cup B$=B$\cup A$

Proof:
Let  $x$\epsilon A$\cup B$
$x$\epsilon A$  or  $x$\epsilon B$        (By the definition of the union sets)
$x$\epsilon B$  or  $x$\epsilon A$
$x$\epsilon B$\cup A$
$A$\cup B$\subseteq B$\cup A$     $(i)$
Now let
$y$ $\epsilon B\cup A$
$y$ $\epsilon B$    or    $y
$\epsilon A$
$y$\epsilon A$    or    $y$\epsilon B$
$y$ $\epsilon A$ $\cup B$
$B
$\cup A$\subseteq A$\cup B$   $(ii)$
From $(i)$ and $(ii)$, we have
$B$ $\cup A$ $= A$ $\cup B$   (by the definition of equal sets)

b)    Commutative property of intersection

For any two sets $A$ and $B$       
$A\cap B$ $= B\cap A$
Proof:
Let   $x$ $\epsilon A\cap B$
$x$ $\epsilon A$  and  $x\epsilon B$    (By the definition of intersection sets)
$x\epsilon B$  and  $x\epsilon A$
$x$ $\epsilon B$ $\cap A$
$A$ $\cap B$ $\subseteq B$ $\cap A$       $(i)$
Now let 
$y$ $\epsilon B$ $\cap A$
$y$ $\epsilon B$   and  $y$ $\epsilon A$
$y$ $\epsilon A$    and    $y$ $\epsilon B$
$y$ $\epsilon A$ $\cap B$
$B$ $\cap A\subseteq A$ $\cap B$      $(ii)$

From $(i)$ and $(ii)$, we have
$A\cap B
$=B\cap A$             (By the definition of equal sets)
c)    Associative property of the union
For any three sets $A$, $B$, and $C$
$A$\cup (B\cup C)$ $=(A\cup B)\cup C$
$y$\epsilon(A\cup B)$\cup C$
$y$\epsilon(A\cup B)$  or  $y$\epsilon C$
$y$\epsilon A$  or  $y\epsilon B$  or  $y\epsilon C$
$y$\epsilon A$  or  $y\epsilon (B\cup C)$
$y$\epsilon A$\cup (B\cup C)$
$y$\epsilon (A\cup B)$\cup C$ v\subseteq A$\cup (B\cup C)$        $(ii)$

Now let

$A
$\cap (B\cap C)$=(A\cap B)$\cap C$
$x$\epsilon A$  or  $x$\epsilon (B\cap C)$
$x\epsilon A$  or  $(x\epsilon B$ and $x\epsilon C)$
$(x\epsilon A$ or $x\epsilon B)$    and    $(x\epsilon A$ or $x\epsilon C)$
$x\epsilon (A\cup B)$    and    $x\epsilon (A\cup C)$
$x\epsilon (A\cup B)
$\cap (B\cup C)$
$A\cup (B\cap C)$\subseteq (A\cup B)$\cap (B\cup C)$        $(i)$
$y$\epsilon (A\cup B)$\cap (A\cup C)$
$y$\epsilon (A\cup B)$  and  $y$\epsilon (A\cup C)$
$y$\epsilon A$  or  $y\epsilon B$  and  $y\epsilon A$  or  $y\epsilon C$
$y$\epsilon A$  or  $(y$\epsilon B$ and $y$\epsilon C)$
$y$\epsilon A$  or  $y\epsilon (B\cap C)$
$y$\epsilon A$\cup (B\cap C)$
$(A\cup B)$\cap (A\cup C)$$\subseteq A$\cup (B\cap C)$        $(ii)$

Proof:
Let:  $x\epsilon A
$\cup (B\cup C)$
$x\epsilon A$  or  $x$\epsilon (B\cup C)$
$x\epsilon A$  or  $x$\epsilon B$  or   $x$\epsilon C$
$x\epsilon (A\cup B)$  or  $x$\epsilon C$
$x\epsilon (A\cup B)$\cup C$
$A\cup (B\cup C)$\subseteq (A\cup B)\cup C$        $(i)$
From $(i)$ and $(ii)$ we have
$A
$\cup (B\cup C)$=(A\cup B)$\cup C$

d)   Associative property of Intersection
       For any three sets $A$, $B$, and $C$
       $A
$\cap (B\cap C)$=(A\cap B)\cap C$
Proof:
Let $x
$\epsilon A$\cap (B\cap C)$
      $x$\epsilon A$    and    $x$\epsilon (B\cap C)$
      $x\epsilon A$    and    $x\epsilon B$    and    $x\epsilon C$
      $x\epsilon (A\cap B)$    and    $x\epsilon C$
      $x\epsilon (A\cap B)\cap C$
      $A\cap (B\cap C)
$\cap C $\subseteq (A\cap B)$\cap C$        $(i)$
Now let
       $y\epsilon (A\cap B)
$\cap C$
       $y\epsilon (A\cap B)$   and   $y\epsilon C$
       $y\epsilon A$   and   $y\epsilon B$    and    $y\epsilon C$
       $y\epsilon A$    and    $y\epsilon (B\cap C)$
       $y\epsilon A
$\cap (B\cap C)$
       $(A\cap B)$\cap C$\subseteq A$\cap (B\cap C)$        $(ii)$
From $(i)$ and $(ii)$ we have

e)    Distributive property of the union over the Intersection
        For any three sets $A$, $B$, and $C$
        $A
$\cup (B\cap C)$=(A\cup B)$\cap (A\cup C)$
Proof:
Let  $x\epsilon A
$\cup (B\cap C)$
Now let
From $(i)$ and $(ii)$ we have
$A\cup (B\cap C)
$=(A\cup B)\cap (A\cup C)$
Similarly, we can prove
Distributive property of intersection over union
For any three sets
$A
$\cap (B\cup C)$=(A\cap B)\cup (A\cap C)$


Post a Comment

0 Comments