Properties of Union and Intersection
a) Commutative Property of Union
For any two sets $A$ and $B$
$A\cup B$ $=B$ $\cup A$
Proof:
Let $x$ $\epsilon A$ $\cup B$
$x$ $\epsilon A$ or $x$ $\epsilon B$ (By the definition of the union sets)
$x$ $\epsilon B$ or $x$ $\epsilon A$
$x$ $\epsilon B$ $\cup A$
$A$ $\cup B$ $\subseteq B$ $\cup A$ $(i)$
Now let
$y$ $\epsilon B\cup A$
$y$ $\epsilon B$ or $y$ $\epsilon A$
$y$ $\epsilon B\cup A$
$y$ $\epsilon B$ or $y$ $\epsilon A$
$y$ $\epsilon A$ or $y$ $\epsilon B$
$y$ $\epsilon A$ $\cup B$
$B$ $\cup A$ $\subseteq A$ $\cup B$ $(ii)$
$B$ $\cup A$ $\subseteq A$ $\cup B$ $(ii)$
From $(i)$ and $(ii)$, we have
$B$ $\cup A$ $= A$ $\cup B$ (by the definition of equal sets)
$B$ $\cup A$ $= A$ $\cup B$ (by the definition of equal sets)
b) Commutative property of intersection
For any two sets $A$ and $B$ $A\cap B$ $= B\cap A$Proof:
Let $x$ $\epsilon A\cap B$
$x$ $\epsilon A$ and $x\epsilon B$ (By the definition of intersection sets)
$x\epsilon B$ and $x\epsilon A$
$x$ $\epsilon B$ $\cap A$
$A$ $\cap B$ $\subseteq B$ $\cap A$ $(i)$
Now let
$y$ $\epsilon B$ $\cap A$
$y$ $\epsilon B$ and $y$ $\epsilon A$
$y$ $\epsilon A$ and $y$ $\epsilon B$
$y$ $\epsilon A$ $\cap B$
$B$ $\cap A\subseteq A$ $\cap B$ $(ii)$
$y$ $\epsilon A$ and $y$ $\epsilon B$
$y$ $\epsilon A$ $\cap B$
$B$ $\cap A\subseteq A$ $\cap B$ $(ii)$
From $(i)$ and $(ii)$, we have
$A\cap B$ $=B\cap A$ (By the definition of equal sets)
$A\cap B$ $=B\cap A$ (By the definition of equal sets)
c) Associative property of the union
For any three sets $A$, $B$, and $C$
$A$ $\cup (B\cup C)$ $=(A\cup B)\cup C$
$y$ $\epsilon(A\cup B)$ $\cup C$
$y$ $\epsilon(A\cup B)$ or $y$ $\epsilon C$
$y$ $\epsilon A$ or $y\epsilon B$ or $y\epsilon C$
$y$ $\epsilon A$ or $y\epsilon (B\cup C)$
$y$ $\epsilon A$ $\cup (B\cup C)$
$y$ $\epsilon (A\cup B)$ $\cup C$ v\subseteq A$ $\cup (B\cup C)$ $(ii)$
Now let
$A$ $\cap (B\cap C)$ $=(A\cap B)$ $\cap C$
$x$ $\epsilon A$ or $x$ $\epsilon (B\cap C)$
$x\epsilon A$ or $(x\epsilon B$ and $x\epsilon C)$
$(x\epsilon A$ or $x\epsilon B)$ and $(x\epsilon A$ or $x\epsilon C)$
$x\epsilon (A\cup B)$ and $x\epsilon (A\cup C)$
$x\epsilon (A\cup B)$ $\cap (B\cup C)$
$x\epsilon (A\cup B)$ and $x\epsilon (A\cup C)$
$x\epsilon (A\cup B)$ $\cap (B\cup C)$
$A\cup (B\cap C)$ $\subseteq (A\cup B)$ $\cap (B\cup C)$ $(i)$
$y$ $\epsilon (A\cup B)$ $\cap (A\cup C)$
$y$ $\epsilon (A\cup B)$ and $y$ $\epsilon (A\cup C)$
$y$ $\epsilon A$ or $y\epsilon B$ and $y\epsilon A$ or $y\epsilon C$
$y$ $\epsilon A$ or $(y$ $\epsilon B$ and $y$ $\epsilon C)$
$y$ $\epsilon A$ or $y\epsilon (B\cap C)$
$y$ $\epsilon A$ $\cup (B\cap C)$
$(A\cup B)$ $\cap (A\cup C)$$\subseteq A$ $\cup (B\cap C)$ $(ii)$
Proof:
Let: $x\epsilon A$ $\cup (B\cup C)$
$x\epsilon A$ or $x$ $\epsilon (B\cup C)$
$x\epsilon A$ or $x$ $\epsilon B$ or $x$ $\epsilon C$
$x\epsilon (A\cup B)$ or $x$ $\epsilon C$
$x\epsilon (A\cup B)$ $\cup C$
$A\cup (B\cup C)$ $\subseteq (A\cup B)\cup C$ $(i)$
From $(i)$ and $(ii)$ we have
$A$ $\cup (B\cup C)$ $=(A\cup B)$ $\cup C$
$A$ $\cup (B\cup C)$ $=(A\cup B)$ $\cup C$
d) Associative property of Intersection
For any three sets $A$, $B$, and $C$
$A$ $\cap (B\cap C)$ $=(A\cap B)\cap C$
For any three sets $A$, $B$, and $C$
$A$ $\cap (B\cap C)$ $=(A\cap B)\cap C$
Proof:
Let $x$ $\epsilon A$ $\cap (B\cap C)$
Let $x$ $\epsilon A$ $\cap (B\cap C)$
$x$ $\epsilon A$ and $x$ $\epsilon (B\cap C)$
$x\epsilon A$ and $x\epsilon B$ and $x\epsilon C$
$x\epsilon (A\cap B)$ and $x\epsilon C$
$x\epsilon (A\cap B)\cap C$
$A\cap (B\cap C)$ $\cap C $ $\subseteq (A\cap B)$ $\cap C$ $(i)$
$x\epsilon (A\cap B)$ and $x\epsilon C$
$x\epsilon (A\cap B)\cap C$
$A\cap (B\cap C)$ $\cap C $ $\subseteq (A\cap B)$ $\cap C$ $(i)$
Now let
$y\epsilon (A\cap B)$ $\cap C$
$y\epsilon (A\cap B)$ $\cap C$
$y\epsilon (A\cap B)$ and $y\epsilon C$
$y\epsilon A$ and $y\epsilon B$ and $y\epsilon C$
$y\epsilon A$ and $y\epsilon (B\cap C)$
$y\epsilon A$ $\cap (B\cap C)$
$y\epsilon A$ and $y\epsilon B$ and $y\epsilon C$
$y\epsilon A$ and $y\epsilon (B\cap C)$
$y\epsilon A$ $\cap (B\cap C)$
$(A\cap B)$ $\cap C$ $\subseteq A$ $\cap (B\cap C)$ $(ii)$
From $(i)$ and $(ii)$ we have
e) Distributive property of the union over the Intersection
For any three sets $A$, $B$, and $C$
$A$ $\cup (B\cap C)$ $=(A\cup B)$ $\cap (A\cup C)$
e) Distributive property of the union over the Intersection
For any three sets $A$, $B$, and $C$
$A$ $\cup (B\cap C)$ $=(A\cup B)$ $\cap (A\cup C)$
Proof:
Let $x\epsilon A$ $\cup (B\cap C)$
Let $x\epsilon A$ $\cup (B\cap C)$
Now let
From $(i)$ and $(ii)$ we have
$A\cup (B\cap C)$ $=(A\cup B)\cap (A\cup C)$
From $(i)$ and $(ii)$ we have
$A\cup (B\cap C)$ $=(A\cup B)\cap (A\cup C)$
Similarly, we can prove
Distributive property of intersection over union
For any three sets
$A$ $\cap (B\cup C)$ $=(A\cap B)\cup (A\cap C)$
Distributive property of intersection over union
For any three sets
$A$ $\cap (B\cup C)$ $=(A\cap B)\cup (A\cap C)$
0 Comments